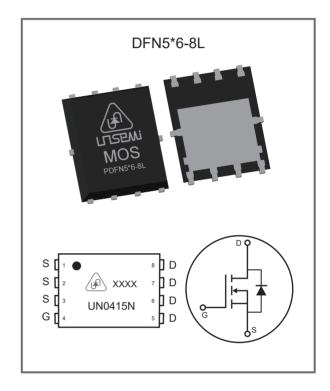
UN0415N1R2-PD56

ROHS

N-Channel Enhancement Mode MOSFET

Product Summary

Vps	40V
ID(@Ta=25℃)	156A
R _{DS(ON)} (@VGS=10V ID=20A)	≤1.9mΩ
R _{DS(ON)} (@VGS=4.5V ID=20A)	≤2.5mΩ


www.unsemi.com.tw

Features

- ◆ Proprietary Trench Gate Device Design and Processes
- ♦ Low R_{DS(ON)}
- 100% Avalanche Tested
- ◆ Reliable and Rugged
- ◆ RoHS complian

Applications

- ◆ DC/DC Converter
- ◆ Battery Management System
- ◆ Industrial and Motor Drive applications
- Synchronous rectifier applications
- ◆ Half-bridge and full-bridge topologies

Package Marking And Ordering information

Part Number	Package Type	Packaging	Reel(pcs)
UN0415N1R2-PD56	DFN5*6-8L	Tape & Reel	5,000

ROHS

Absolute Maximum Ratings TC = 25℃ unless otherwise specified

Parameter		Symbol	Maximum	Units	
Drain to Source Voltage		VDs	40	V	
Continuous Drain Current 1)	@TC=25°C	- ID –	156	A	
Continuous Diain Current 7	@TC=100°C		99		
Drain Current Pulsed 2)	IDM	468	А		
Gate-Source Voltage		VGS	±20	V	
Single Pulsed Avalanche Energy 3)		EAS	455	mJ	
	@TC=25°C	PD	83	W	
Power Dissipation	@TC=100°C		33	V V	
Junction and Storage Temperature Range		Tstg,TJ	-55~150	°C	

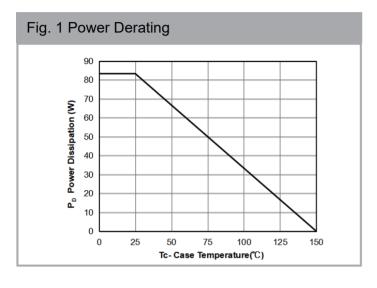
Thermal Characteristics

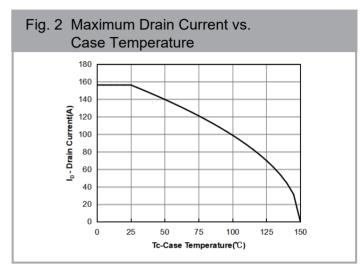
Parameter	Symbol	Tay	Max	Units
Thermal Resistance from Junction to Ambient	RθJA		60	%C\M
Thermal Resistance, Junction to Case	RøJC		1.5	%C/W

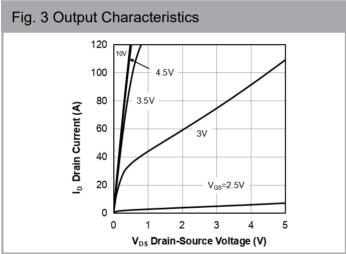
Notes:

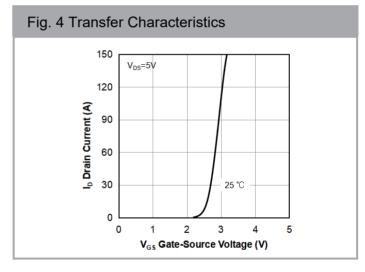
- 1) The maximum current rating is silicon wafer limited.
- 2) Single pulse width limited by junction temperature .
- 3) Limited by TJ(MAX), Starting at TJ=25 $^{\circ}\text{C}$, Rg=25 Ω , L=0.5 mH.
- 4) Design parameters, Guaranteed by design, not subject to production.

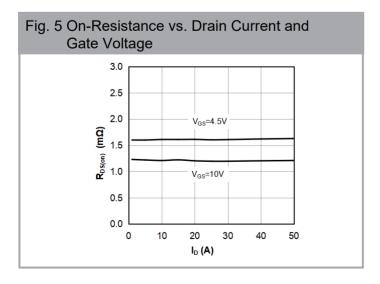
ROHS

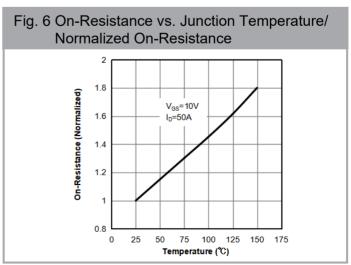

Electrical Characteristics at Tc = 25°C unless otherwise specified

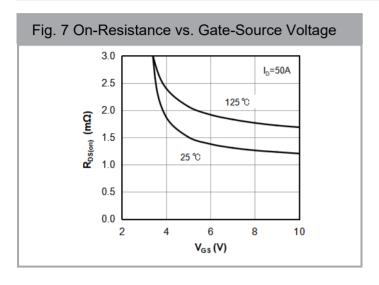

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
STATIC PARAMETERS						
Drain-Source Breakdown Voltage	BVDSS	Vgs = 0V, ID = 250uA	40			V
Drain-Source Leakage Current	IDSS	VDS = 40V , VGS = 0V			1.0	μA
Gate-source leakage current	Igss	Vgs = ±20V , Vps = 0V			±100	nA
Gate-Source Threshold Voltage	VGS(TH)	Vgs = Vps , Ip = 250µA	1.0	-	2.5	V
Drain-Source On-State Resistance	PDS(ON)	Vgs = 10V , ID = 20A		1.2	1.9	mΩ
Dialii-Source Oil-State Resistance	RDS(ON)	Vgs = 4.5V , ID = 20A		1.7	2.5	mΩ
Forward Transconductance(GMP)	GFS	VDS = 5.0V, ID = 30A		62		S
E	Body-Diode	PARAMETERS				
Drain-Source Diode Forward Voltage	Vsd	Is = 1A, VGS = 0V		0.7	1.1	V
Body Diode Reverse Recovery Time	trr	IF = 20A		53		ns
Body Diode Reverse Recovery Charge	Qrr	di/dt = 100A/μs		82		nC
	DYNAMIC	PARAMETERS 4)				
Gate Resistance	Rg	F = 1MHZ		1.0		Ω
Input Capacitance	Ciss	Vgs = 0V		9247		pF
Output Capacitance	Coss	Vps = 20V		1455		pF
Reverse Transfer Capacitance	Crss	F = 1MHz		1426		pF
Gate charge Total	Qg	Vgs = 10V		125		nC
Gate to Source Charge	Qgs	Vps = 20V		36.7		nC
Gate to Drain Charge	Qgd	ID = 20A		35.2		nC
SWITCHING PARAMETERS 4)						
Turn-On Delay Time	td(ON)			23.6		ns
Turn-On Rise Time	tr	$V_{DS} = 20V, V_{GS} = 10V$ $R_{G} = 1.5Ω$		30.7		ns
Turn-Off Delay Time	td(OFF)	KG - 1.312		76.2		ns
Turn-Off Fall Time	tf			42.4		ns

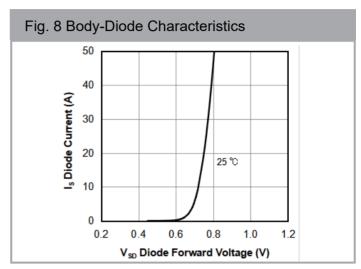


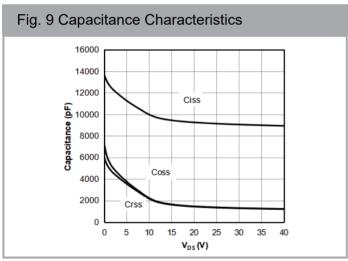

ROHS

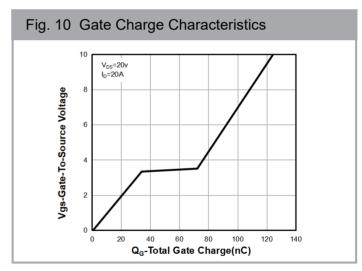

Electrical Characteristics Curves

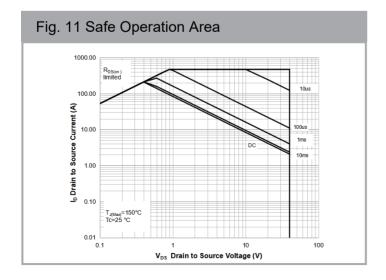


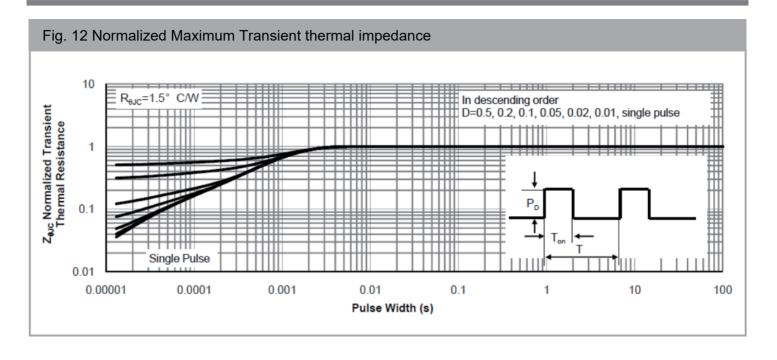






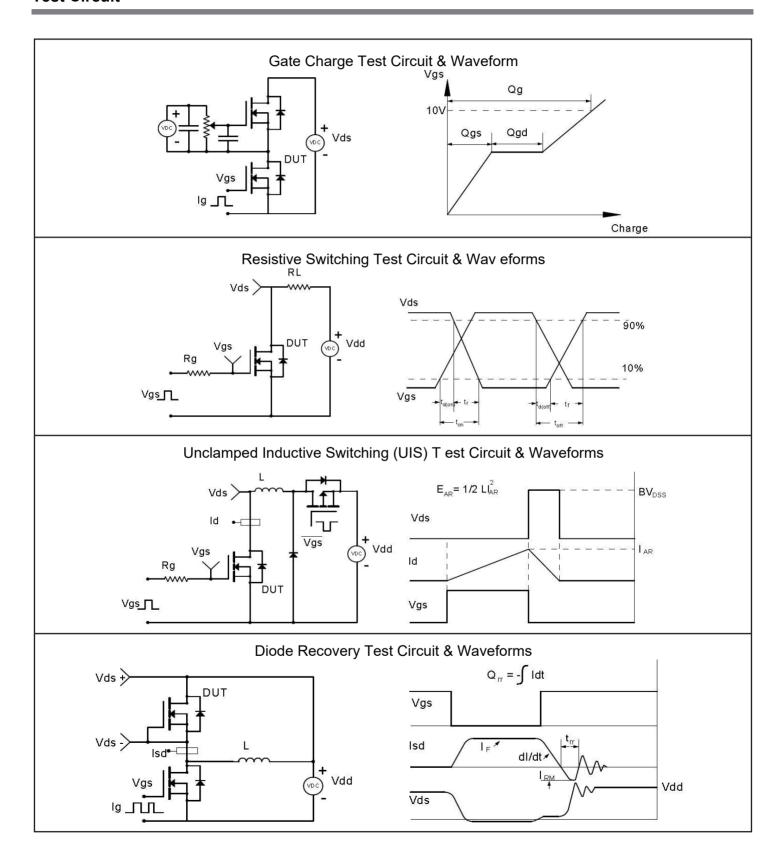

ROHS


Electrical Characteristics Curves



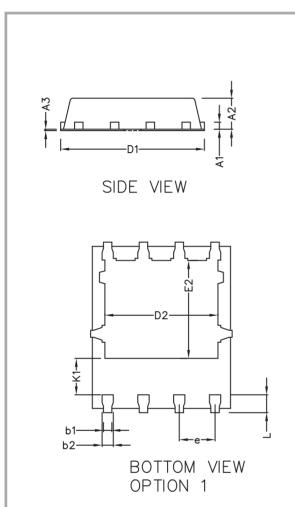
ROHS

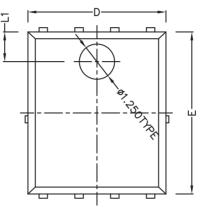
Electrical Characteristics Curves

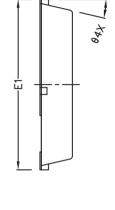


ROHS

Test Circuit






ROHS

DFN5*6-8L Package Outine & Dimensions (Units: mm / in)

PDFN5*6-8L

TOP VIEW

SIDE VIEW

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
Syllibol	Min	Max	Min	Max	
A1	(0.254	BSC)	(0.0100 BSC)		
A2	1.000	1.100	0.0394	0.0433	
А3	0.005	-	0.0001	-	
b1	0.250	0.300	0.0098	0.0118	
b2	0.350	0.400	0.0138	0.0157	
D	4.800	4.900	0.1890	0.1929	
D1	5.000	5.100	0.1969	0.2008	
D2	3.910	4.010	0.1539	0.1579	
Е	5.650	5.750	0.2224	0.2263	
E1	5.950	6.050	0.2342	0.2381	
E2	3.375	3.475	0.1329	0.1368	
е	(1.270	(1.270 TYPE)		TYPE)	
L	0.530	0.630	0.0209	0.0248	
L1	1.00 REF		0.0394 REF		
θ	13° TYPE		13° TYPE		
K1	1.235 REF		0.0486 REF		

ROHS

Disclaimer

UNSEMI RESERVES THE RIGHT TO MAKE CHANGE ON OUR PRODUTS, PRODUCTS SPECIFICATION AND DATA WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

UN SEMICONDUCTOR LIMITED its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "UNSEMI")does not give any representations or warranties for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

In no event shall UNSEMI be liable for any indirect, incidental, punitive, special or consequential damages (including any and all implied warranties, warranties of fitness for particular purpose, non-infringement and merchantability.) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Statements regarding the suitability of products for certain types of applications are based on UNSEMI knowledge of typical requirements that are often placed on UNSEMI products in generic applications. Such statements are not binding, statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify UNSEMI's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Unless otherwise agreed in writing, UNSEMI product is not designed, authorized or warranted to be suitable for use in medical life-saving, or life-sustaining application, nor in applications where failure or malfunction of a UNSEMI product can reasonably be expected to result in personal injury, death or severe property or environmental damage. UNSEMI and its suppliers accept no liability for inclusion or use of UNSEMI products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

All referenced brands, product names, service names and trademarks are the property of their respective owners.